Predicting rehabilitation treatment helpfulness to stroke patients: A supervised learning approach

Author:

Lo Chia-Lun,Tseng Hsiao-Ting

Abstract

Stroke (Cerebral vascular accident, CVA) is a common and serious disease. Most of the survivals would be disabled after their illness recovery, causes serious burden on caregivers. It is said that rehabilitation could help functional recovery of stroke patients, regain independence after stroke. Due to the long course of stroke, how to prevent survivals from recurrence is an important issue. This study attempts to examine the relationship between stroke recurrence and strength of rehabilitation, and build a stroke recurrence prediction model utilizing a number of supervised learning techniques to assist physicians with making clinical decisions.In the past, most of the related work used the samples from a single hospital as a sample, but it cannot fully catch all the clinic information of the patients. Therefore, this study used the Longitudinal Health Insurance Database 2010 of the NHIRD as the data source, to examine the effectiveness of rehabilitation.In terms of accuracy rate of all classifiers, we get the best effectiveness (78%) while adopting the inpatient admission dataset and C4.5 to predict recurrence. We also find physical therapy, occupational therapy and speech therapy treatments during inpatient admission are the key factors to decrease the chance to recrudesce in the rehabilitation periods. The higher strength and frequency rehabilitation treatment is also the key influence variables in our high accuracy prediction model which means that is useful to lower the recurrence rate of stroke patients.

Publisher

Sciedu Press

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3