Automatic Music Genre Classification and Its Relation with Music Education

Author:

Ceylan Hasan Can,Hardalaç Naciye,Kara Ali Can,Hardalaç Fırat

Abstract

Because the classification saves time in the learning process and enables this process to take place more easily, its contribution to music learning cannot be denied. One of the most valid and effective methods in music classification is music genre classification. Given the rapid progress of music production in the world and the significant increase in the number of data, the process of classifying music genres has now become too complex to be done by humans. Considering the successful results of deep neural networks in this field, the aim is to develop a deep learning algorithm that can classify 10 different music genres. To reveal the efficiency of the model by comparing it with others, we make the classification using the GTZAN dataset, which was previously used in many studies and retains its validity. In this article, we use a convolutional neural network (CNN) to classify music genres, taking into account the previous successful results. Unlike previous studies in which CNN was used as a classifier, we represent music segments in the dataset by mel frequency cepstral coefficients (MFCC) instead of using visual features or representations. We obtain MFCCs by preprocessing the music pieces in the dataset, then train a CNN model with the acquired MFCCs and determine the success of the model with the testing data. As a result of this study, we develop a model that is successful in classifying music genres by using smaller data than previous studies.

Publisher

Sciedu Press

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Music Genre Classification Using Modified MobileNet Deep Learning Model;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10

2. Music Education Teaching Quality Evaluation System Based on Convolutional Neural Network;Journal of Information & Knowledge Management;2024-02

3. A Multiclass Semi-Supervised Deep Convolutional Generative Adversarial Network for Music Genre Classification Using Mel-Frequency Cepstral Coefficients;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24

4. Informatization Integration Strategy of Modern Popular Music Teaching and Traditional Music Culture in Colleges and Universities in the Era of Artificial Intelligence;Applied Mathematics and Nonlinear Sciences;2023-12-05

5. Deep Learning for Music: A Systematic Literature Review;2023 International Conference on Information Management and Technology (ICIMTech);2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3