The impact of temperature patterns during storage of Scots pine and Norway spruce seeds on their germination and fungal infection rates

Author:

Nikolaeva M. A.1ORCID,Varentsova E. Yu.2ORCID,Safina G. F.3ORCID

Affiliation:

1. St Petersburg State Forest Technical University

2. St Petersburg State Forest Technical University,

3. N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Abstract

Relevance of the study. One of the ways to maintain the genetic diversity of forest-forming species is to preserve highquality seed material ex situ. However, the relationship between the diversity of pathogenic mycobiota and the duration and methods of forest tree seed storage remains underexplored. The results of research into this problem can be used in forest seed production and forest phytopathology.Materials and methods. For our study we used seeds ofРinus sylvestris L. and Picea abies (L.) Karst. of the orthodox type, harvested in the period of 1996–2011 and stored under different temperatures: +20°С, +4°С, –18°С, and in liquid nitrogen vapor (–182°С) since 2011. Prior to their storage, seed samples were dried to a moisture content of 4.2–4.4% and hermetically packed. Seed germination was tested before and after three, five and eight years of storage, following GOST 13056.6-97 standards. The level of seed infection and the composition of pathogenic fungi were assessed.Results. After eight years of storage at +20°С, pine and spruce seed germination capacity decreased by 13–60%, depending on the year of harvesting. Seed storage at –18°С and –182°С allowed us to prevent seed infection and preserve seed viability. In most cases, the germination energy and germination capacity were negatively correlated with the level of seed infection. The diversity of pathogenic (mold) fungi on the surface of seeds was represented by ten genera; the most common were saprotrophs: Aspergillus P. Micheli, Penicillium Link, Rhizopus Ehrenb., Scopulariopsis Bainier.Conclusion. At the present stage of research, the success of seed storage at low and ultralow temperatures was demonstrated. We recommend cryopreservation for the long-term storage of improved and valuable seeds.

Publisher

FSBSI FRC N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Subject

Plant Science,Genetics,Molecular Biology,Physiology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Biotechnology

Reference24 articles.

1. Bojko T.A., Krylova I.O. Luk K.S. Phytopathogen fungi as contaminants of hylophate seeds. Perm: Perm State Agricultural Academy; 2 0 1 2. [in Russian]

2. Bonner F.T., Karrfalt R.P. The Woody Plant Seed Manual. Agricultural Handbook No. 7 2 7. Washington, DC: USDA Forest Service; 2008. Concept of the Federal Target Program “Development of forest seed production for the period of 2009–2020” (Kontseptsiya Federalnoy thselevoy programmy “Razvitiye lesnogo semenovodstva na period 2009–2020 gg.”).

3. Lesnaya Rossiya = Forest Russia. 2008;9:9-15. [in Russian]

4. For grateful descendants (Dlya blagodarnykh potomkov).

5. Lesnaya Rossiya = Forest Russia. 2008;1:44-48. [in Russian]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3