Resistance of old winter bread wheat landraces to tan spot

Author:

Mironenko N. V.1ORCID,Kovalenko N. M.1ORCID,Baranova O. A.1ORCID,Mitrofanova O. P.2ORCID

Affiliation:

1. All-Russian Research Institute of Plant Protection

2. N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Abstract

Background. The most effective and environmentally safe way to combat wheat diseases is to produce cultivars resistant to their pathogens. For this purpose, old landraces are often used as genetically diverse sources of traits important for breeding. In the process of wheat breeding for resistance to tan spot caused by the fungus Pyrenophora tritici-repentis (Died.) Drechs. (abbr. Ptr), selection is carried out against the dominant allele of Tsn1, the gene of sensitivity to the toxin Ptr ToxA, which induces necrosis and represents the main pathogenicity factor of Ptr controlled by the ToxA gene. The aim of the study was to characterize a set of bread wheat (Triticum aestivum L.) accessions from the VIR collection for resistance to various Ptr populations, genotype these accessions using Xfcp623 – a DNA marker of the Tsn1 gene, and identify sources of tan spot resistance.Materials and methods. Sixty-seven accessions of winter bread wheat landraces were studied. Seedling resistance to two Ptr populations was assessed using a 5-point scale adopted at VIZR. The allelic state of Tsn1 was identified by PCR.Results. Dominant alleles of Tsn1 were found for 55% of the studied accessions. Seventeen accessions were resistant or moderately resistant to two Ptr populations and an isolate from Krasnodar Territory previously used for their characterization. Nine of them had the tsn1tsn1 genotype, and 8 had Tsn1Tsn1. The accessions mainly belonged to three agroecological groups proposed by N. I. Vavilov: “steppe winter bread wheat (Banatka wheats)”, “North European forest awnless bread wheats (Sandomirka wheats)”, and “Caucasian mountain winter bread wheat”.Conclusion. The identified 17 accessions resistant to Ptr are potential breeding sources of resistance. In the studied set of accessions, no significant relationship was found between the allelic state of the Tsn1 gene in the accession and its response to the infection with pathogen populations, including isolates with the ToxA gene.

Publisher

FSBSI FRC N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Subject

Plant Science,Genetics,Molecular Biology,Physiology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3