Diversity of barley accessions from the Asian part of Russia in greenbug resistance

Author:

Radchenko E. E.1ORCID,Abdullaev R. A.1ORCID,Dyatlova K. D.2ORCID,Akimova D. E.1ORCID,Zveinek I. A.1

Affiliation:

1. N.I. Vavilov All-Russian Institute of Plant Genetic Resources

2. Lobachevsky State University of Nizhny Novgorod

Abstract

Background. The use of barley cultivars resistant to greenbug (Schizaphis graminum Rondani) is an effective, economical and ecology-friendly way to control the dangerous phytophage. The insect is able to overcome the resistance of the host plant, which necessitates a relentless search for new genes to ensure reliable protection of barley fields from the pest.Materials and methods. Resistance to the Krasnodar greenbug population was assessed in 345 barley accessions from the Asian part of Russia. Besides, resistance to S. graminum was studied in cv. ‘Post’ (carrier of the Rsg1 gene), a pure line derived from cv. ‘Onokhoisky’ (k-16626, Buryatia) heterogeneous for this trait, and landraces from Mongolia (k-3885, k-3904, and k-4080). Juvenile plants were infested with aphids in the laboratory, and when a susceptible control died, the damage to experimental barley accessions was assessed using a scoring scale. Genetic control of greenbug resistance in the line derived from cv. ‘Onokhoisky’ was studied using the insect’s test clones and an analysis of the segregation in F2 hybrids from crossing the resistant line with cv. ‘Belogorsky’ susceptible to the aphid, when the plants were infested with the Krasnodar population of the phytophage and with clones of S. graminum.Results and conclusions. We identified 7 accessions heterogeneous for aphid resistance. Among them, plants with a high level of greenbug resistance were found in three landraces from Tuva (k-14714, k-14718, and k-14733). Resistance was also clearly expressed in the line derived from cv. ‘Onokhoisky’. This cultivar is protected by a dominant allele that differs from the previously identified Rsg1, as well as from the alleles found in Mongolian landraces k-3904, k-4080, and k-3885. ‘Onokhoisky’ also has genes with low expressivity, which manifest themselves when the main gene for resistance to S. graminum appears ineffective.

Publisher

FSBSI FRC N.I. Vavilov All-Russian Institute of Plant Genetic Resources

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3