Analysis of the genotype × environment interactions and assessment of the adaptability potential in barley under the conditions of the Northern Trans-Urals

Author:

Tetyannikov N. V.1ORCID,Bome N. A.2ORCID

Affiliation:

1. Federal Horticultural Research Center for Breeding, Agrotechnology and Nursery

2. University of Tyumen

Abstract

Background. Crop yield is a compound and complex character in breeding programs. A stable high yield is determined by the genotype, environmental impacts, and their interaction. A comprehensive assessment of cultivars based on their adaptability, plasticity and stability makes it possible to select among the studied assortment the most promising, potentially high-yielding and environmentally flexible plant forms adaptable to a wide range of environmental conditions.Materials and methods. Evaluation of 146 accessions representing two-row (subsp. distichon L.) and six-row (subsp. vulgare) barleys (Hordeum vulgare L.) was performed in 2015–2017 to measure the adaptability, stability, plasticity and homeostasis of barley yield. Experimental data were statistically processed using the methods of the two-way ANOVA and correlation analysis.Results and conclusion. It was established that barley yield formation was almost equally determined by the genotype (34.3%), environmental conditions (31.9%), and genotype × environment interactions (33,7%), showing that the tested barleys were relatively well adaptable to climate changes in the Northern Trans-Urals. Barley yield was more closely associated with grain weight per plant (r = 0.72) and the number of productive stems per area unit (r = 0.63), and to a lesser extent with seed germination rate in the field (r = 0.39) and 1000 grain weight (r = 0.37). Strong correlations were observed for the yield with the adaptability coefficient (r = 0.94), environmental plasticity index (r = 1.00), and compensatory capacity (r = 0.96). Cvs. ‘Abyssinian 14’ (k-23504, var. pallidum) and ‘Kharkovsky 70’ (k-23683, var. nutans) exhibited a set of adaptive and productive properties.

Publisher

FSBSI FRC N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Subject

Plant Science,Genetics,Molecular Biology,Physiology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Biotechnology

Reference36 articles.

1. Ceccarelli S., Erskine W., Hamblin J., Grando S. Genotype by environment interaction and international breeding programmes. Experimental Agriculture. 1994;30(2):177-187. DOI: 10.1017/S0014479700024121

2. Dogan Y., Kendal E., Oral R. Identifying of relationship between traits and grain yield in spring barley by GGE biplot analysis. Agriculture and Forestry. 2016;62(4):239- 252. DOI: 10.17707/AgricultForest.62.4.25

3. Dospekhov B.A. Methodology of field trial (with fundamentals of statistical processing of research results) (Metodika polevogo opyta [s osnovami statisticheskoy obrabotki rezultatov issledovaniy]). 5th ed. Moscow: Alyans; 2014. [in Russian]

4. Eberhart S.A., Russel W.A. Stability parameters for comparing varieties. Crop Science. 1966;6(1):36-40. DOI: 10.2135/cropsci1966.0011183X000600010011x

5. Goncharenko A.A. Ecological stability of grain crop varieties and tasks of breeding. Grain Economy of Russia. 2016;(3):31-37. [in Russian]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3