Poly-ε-caprolactone-based granules with allylisothiocyanate for controlling of golden cyst potato nematode

Author:

Sukhanova A. A.1ORCID,Prokopchuk Yu. A.1ORCID,Ertiletskaya N. L.1ORCID,Boyandin A. N.1ORCID,Churakov A. A.2ORCID,Syrtsov S. N.1ORCID

Affiliation:

1. Reshetnev Siberian State University of Science and Technology

2. Reshetnev Siberian State University of Science and Technology; Krasnoyarsk State Agrarian University

Abstract

   In this study, the characteristics of extruded granules based on biodegradable poly-ε-caprolactone and montmorillonite deposited with allylisothiocyanate and their effect on Globodera rostochiensis RoI were investigated.   The prepared granules were characterized using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. It was shown that encapsulation efficiency of allylisothiocyanate in montmorillonite depends on the conditions of complex preparation and ranges from 0.76 to 29.83%, and in poly-ε-caprolactone/montmorillonite/allylisothiocyanate granules after thermal processing it decreases down to 1.06 %. According to the results of Fourier-transform infrared spectroscopy it was found that allylisothiocyanate inclusion did not result in formation of new chemical bonds, but significantly affected the temperature of poly-ε-caprolactone degradation that decreased from 537 to 472 °С. In comparison with the thermogram of montmorillonite, the weight loss corresponding to dehydration at 100 °С decreased by 2.9 %, which probably means that part of the intramolecular water was replaced by allylisothiocyanate molecules encapsulated in montmorillonite. In the experiment with two potato varieties infested with nematode cysts it was shown that soil treatment with allylisothiocyanate solutions allows to decrease number of cysts of Globodera rostochiensis RoI compared to positive control (non-treated infested potato) in 1.5–3.0 times depending on the variety. Moreover, in contrast to allylisothiocyanate solutions, poly-ε-caprolactone/montmorillonite/allylisothiocyanate granules are more effective that makes them promising for applications in Globodera rostochiensis RoI control.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3