Study on the ability of activated sludge bacteria to form biofilms <i>in vitro</i>

Author:

Khasanova A. A.1ORCID,Sirotkin A. S.1ORCID,Perushkina E. V.1ORCID

Affiliation:

1. Kazan National Research Technological University

Abstract

   The study aims to comparatively characterize in vitro biofilm formation in bacterial cultures isolated from activated sludge, as well as archival cultures capable of xenobiotics biodegradation: Alcaligenes faecalis 2, Acinetobacter guillouiae 11h, Rhodococcus erythropolis ILBIO, and Achromobacter pulmonis PNOS. An analysis of the 16S rRNA nucleotide sequence identified strains isolated from activated sludge: Paenibacillus odorifer, Bacillus subtilis, Micrococcus yunnanensis, and Bacillus proteolyticus.   The formation of biofilms by microorganisms was studied on LB medium and synthetic culture medium (with sodium acetate as a carbon source). With cell growth on LB medium, an increase in biofilm biomass was observed in Paenibacillus odorifer, Bacillus subtilis, Alcaligenes faecalis 2, and Achromobacter pulmonis PNOS. The cultivation stage duration (72 and 144 h), as well as the additional dosing of substrates, had an effect on the biofilm formation process: by 144 h of cultivation, the biomass values amounted to 0.6–1.3 optical units. An average 63–77% increase in biofilm biomass was noted for Bacillus subtilis and Paenibacillus odorifer cells as compared to the 72-hour process. At the final stage of cultivation (144 h), the values of exopolysaccharides in the matrix amounted to over 0.02 optical units for Bacillus subtilis and Paenibacillus odorifer. The metabolic activity of activated sludge bacteria forming the biofilm reached 628–3609 Fl./OD540. Thus, activated sludge microorganisms forming the biofilm were shown to retain viability and metabolic activity during growth under in vitro conditions.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3