Study of hop aroma components using chemical sensors

Author:

Korostelev A. V.1,Rukavitsyn P. V.1,Novikova I. V.1,Kuchmenko T. A.1,Umarkhanov R. U.1,Muravev A. S.1

Affiliation:

1. Voronezh state university of engineering technologies

Abstract

An array of sensors was selected taking into account the specific component composition of the essential oil contained in the hop plant. The aroma intensity of several hop varieties was investigated using high-frequency piezoelectric resonators with a high sensitivity and low detection limits for volatile components. Analytical signals of the sensor array in the vapour of the equilibrium gas phase of the samples were assembled into a multidimensional data set, presented in the form of a “visual imprint” (diagrams were plotted according to the maximum responses of the sensors in the equilibrium gas phase of the samples during a time interval of 60 s). Data for the samples with acceptable organoleptic characteristics complying with regulatory documents were taken as the standard. For the samples under study, the responses of chemical sensors in the equilibrium gas phase were presented in the form of a total signal and compared with the “visual imprint” of the maxima for the standard; the areas of indentation figures were calculated – SΣ, Gc.s.. As additional characteristics, 5 identification parameters Aij were used, calculated from the signals of individual sensors in the gas phase of the analyzed samples and selected standards. The identity between the composition of the sample under analysis and the corresponding standard was established, when the relative difference in the parameters of the "visual imprint" figures did not exceed 20%. Conversely, a sample was considered not identical to the selected standard, when the relative difference was higher than 20%. The experimental results were used to establish the identity or authenticity of hop pellet samples from different batches.

Publisher

Irkutsk National Research Technical University

Subject

General Medicine

Reference20 articles.

1. Kunze W. Technologie Brauer und Mälzer. Im Verlag der Berlin (Russ. ed.: Kunze W. Tekhnologiya soloda i piva. St. Petersburg: Professiya; 2001. 912 p.)

2. Meledina TV. Raw and auxiliary materials in brewing. St. Petersburg: Professiya; 2003. 304 p. (In Russian)

3. Kuchmenko ТА. Chemical sensors based on piezoquartz microweights. In: Problems of analytical chemistry. Vol. 14. Moscow: Nauka; 2011. p. 127– 202. (In Russian)

4. Roy RB, Tudu B, Bandyopadhyay R, Bhattacharyya N. Application of electronic nose and tongue for beverage quality evaluation. Engineering Tools in the Beverage Industry. 2019;3:229–254. https://doi.org/10.1016/B978-0-12-815258-4.00008-1

5. Kuchmenko ТА, Shuba АА, Belskich NV. The identification parameters of organic substances in multisensors piezoquartz microbalance. Analitika i kontrol = Analytics and Control. 2012;16(2):1–11. (In Russian)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3