A technology for producing electrode materials for lithium-ion batteries from Kazakhstan spodumene raw materials

Author:

Zhanabayeva A. K.1,Bishimbayeva G. K.2ORCID,Zhumabayeva D. S.2ORCID,Nalibayeva A. M.2ORCID,Abdikalykov Ye. N.3ORCID

Affiliation:

1. D. V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry; Kazakh-British Technical University

2. D. V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry

3. D. V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry;

Abstract

This study aims to develop a technology for producing innovative electrode materials for modern lithium batteries. An efficient technology for post-purifying of technical lithium carbonate to reach the level of battery quality (99.95%) was developed. This technology involves causticiziation of technical lithium carbonate, ultrafiltration and ion-exchange sorption of a lithium hydroxide solution, followed by precipitation of lithium carbonate with ammonium carbonate. Cation-exchange resins of the brands Purolite S930Plus, Purolite S940 and Purolite S950 were studied for sorption purification of lithium-containing solutions from calcium and magnesium impurities. Purolite S940 and Purolite S950 can be recommended as the most effective cation exchangers. The kinetic parameters of calcium and magnesium sorption were determined using a Purolite S940 cation exchanger. The bicarbonation mode was set at room temperature and a pressure of 0.3 atm. The synthesized samples of lithium-iron-phosphate studied by the sol-gel method. The structures of the obtained electrode materials corresponding to the standard profile of lithium-iron-phosphate were investigated by X-ray diffraction. The synthesized electrode materials in the structure of lithium half- and button cells confirmed their good electrochemical properties, stable operation of batteries and a high intercalation reversibility of lithium ions in the samples within the potential range of 2.5–4.3 V. The main research results are innovative cathode and anode materials of a new generation for modern lithium-ion batteries with significantly increased capacity and stability of operation, obtained from lithium precursors – battery grade lithium carbonate based on domestic mineral and technogenic raw materials.

Publisher

Irkutsk National Research Technical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3