Comparison of the effect produced by ozone and constant electric field on the morphophysiological characteristics of tomato (Solanum lycopersicum L.) and wheat (Triticum aestivum L.) seedlings

Author:

Nurminsky V. N.1ORCID,Lazukin A. V.2ORCID,Gundareva S. V.2ORCID,Stolbikov A. S.3ORCID,Tretyakova A. V.4ORCID

Affiliation:

1. Siberian Institute of Plant Physiology and Biochemistry SB RAS

2. National Research University «Moscow Power Engineering Institute»

3. Siberian Institute of Plant Physiology and Biochemistry SB RAS; Irkutsk State University

4. Irkutsk State University

Abstract

This study investigated the effect of ozone and constant electric field on the morphological and physiological characteristics of tomato and wheat seedlings with the purpose of creating an effective and environmentally friendly technology for increasing the growth potential of crop seeds. Seeds of cv. Ventura tomato (Solanum lycopersicum L.) and cv. Irkutskaya soft winter wheat (Triticum aestivum L.) were exposed to ozone concentrations of 1, 3, and 5 g/m3 and electric field strengths of 1.6 and 2 kV/cm. The exposure time was 15 and 30 min. Both ozone and constant electric field were found to expand the spread of data on the shoot and root length, as well as alter the energy of seed germination. Depending on ozone concentrations and electric field strengths, the effect of seed treatment was established to be both positive and negative. The most optimal mode for ozonization of tomato seeds was achieved at an ozone concentration of 5 g/m3 for 15 minutes. The optimal mode for treating tomato seeds by electric field was achieved at an electric field strength of 1.6 kV/cm for 15 min. Wheat was determined to response to treatment not as intensively as tomato. When treating wheat seeds, ozonization is a more preferable method, since it stimulates germination even at an ozone concentration of 1 g/m3 for 15 minutes. However, our experimental results showed that even small changes in the mode of exposure both to ozonization and electric field can result in seed damage, thereby inhibiting the development of plants and decreasing the seed germination energy.

Publisher

Irkutsk National Research Technical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3