Improving design and application method of screening bucket excavators

Author:

Cheban A. Yu.1

Affiliation:

1. Mining Institute, Far East Branch of the Russian Academy of Sciences

Abstract

The purpose of the study is to increase the productivity and economic efficiency of mining operations using screening bucket excavators on the basis of the introduction of a new technical and technological solution that expands equipment functionality. The study involves the analysis of known designs of screening buckets installed on excavators that ensure material separation to be carried out simultaneously with excavation and loading works. It is noted that a promising development direction of screening buckets is a design with working drums. The article presents an excavator with a modernized screening bucket and its operation technology, which allows to start rock mass sorting in the bucket while the excavator is turning to the place of unloading. The improved screening bucket is equipped with a hinged movable bottom controlled by hydraulic cylinders to accumulate fine fractions screened through the working drums. Fine fractions accumulated in the moving bottom are unloaded into a dump truck, after which screening continues directly into the body of the dump truck. Screening finished, the movable bottom closes and the excavator unloads the coarse fractions remaining in the bucket into another vehicle. Unloading is carried out by bucket turning. The combination of screening and excavator turning reduces the operation cycle time, which increases the performance of both the excavator and dump trucks. The use of a modernized screening bucket with a moving bottom eliminates the loss of valuable fine material as a result of spilling when the excavator turns for unloading. The movable bottom can be installed on the screening buckets of known designs and does not require their significant alteration. Application of the proposed technical and technological solution will reduce unit costs and increase the efficiency of work.

Publisher

Irkutsk National Research Technical University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3