Surface structure of Amur region high grade native gold

Author:

Radomskiy S. M.1,Radomskaya V. I.1

Affiliation:

1. Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences

Abstract

The purpose of the research is to study the surface structure of high grade gold. The subject of research is gold ore fields in the Amur region. The object of the study is samples of native high grade gold grains from these fields. The study uses the methods of thermodynamics and X-ray electron microscopy. The study results in revealing a multilayer structure of the surface of high grade minerals of the Amur region native gold with the following levels: a boundary layer with zero oxidation degree Au0 in the form of yellow metallic gold; an oxide layer with the oxidation degree Au+1 in the form of purple Au2O; an oxide layer with the oxidation degree Au+3 in the form of a yellow-brown Au2O3; a hydrated oxide layer with the oxidation degree Au+3 in the form of a red-yellow-brown Au(OH)3. The methods of electron microscopy have allowed to identify external surface structures – dense oxide layers of the form of Au2O3 and loose hydrated layers of the form of Au(OH)3, whereas the inner layers of metallic and monovalent gold are not visible. Important thermodynamic characteristics of the presented levels are the values of standard oxidation-reduction potentials (E°), which determine their physicochemical properties: for metallic gold E° = +1.68 V; for the oxide layer with the oxidation degree Au+1 in the form of Au2O – E° = +0.32 V; for the oxide layer with the oxidation degree Au+3 in the form of Au2O3 – E° = +1.36 V; for the hydrated oxide layer with the oxidation degree Au+3 in the form of Au(OH)3 – E° = +0.7 V. The results of the conducted studies indicate that the surface structure has several layers that lower the oxidation-reduction potential, which explains the generation and formation of migratory forms of gold in humid hypergene conditions of natural environment.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3