Application of an improved mining complex for opencast mining of ore deposits

Author:

Cheban A. Y.1ORCID

Affiliation:

1. Mining Institute, Far East Branch of the Russian Academy of Sciences

Abstract

The purpose of the study is reducing the loss of mineral raw materials and increasing the efficiency of mining operations using a mining complex through the introduction of a new design and engineering solution that improves the equipment functionality. The study involves the analysis of known designs of mining equipment capable of providing the transformation of cyclic scooping of rock mass into its continuous loading, as well as screening of fine fractions from the ore mass. High productivity mining complexes are referred to a promising direction of mining equipment development. The article proposes an improved design of the mining complex, which allows to combine the extraction and loading process and ore mass grading. The improved mining complex is equipped with an annular conveyor with vibrating grids through which fines are screened into the accumulation hopper. From the accumulation hopper the small fractions are sent by means of a pneumatic conveying system to the bunker sections of a special-purpose hauler while the oversize product is loaded into a dump truck by a dump conveyor. The fine fractions of substandard ore collected in the bunker sections are sent for heap leaching. The fine fractions of conditioned ore are sent to the concentration plant to be processed. The proposed design and engineering solution employing an improved mining complex will reduce the cost of works and increase the recovery factor of mineral raw materials in the development of complex-structured deposits of ores characterized by natural concentration of small classes. Removal of fine ore fractions directly during the excavation and loading process can significantly reduce the dusting and decrease the loss of mineral raw materials from blowing and spilling of fine fractions.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3