Composition of fatty acids of higher aquatic plants in Lake Kotokel as valuable biological raw materials

Author:

Zhigzhitzhapova S. V.1ORCID,Nikitina E. P.1ORCID,Bazarsadueva S. V.1ORCID,Dylenova E. P.1ORCID,Anenkhonov O. A.2,Taraskin V. V.1ORCID,Radnaeva L. D.1ORCID

Affiliation:

1. Baikal Institute of Nature Management SB RAS

2. Institute of General and Experimental Biology SB RAS

Abstract

Fatty acids, as part of cell membranes, determine their fluidity and dielectric constant. In addition, they play an important role in human and animal nutrition. This work examines the composition and fatty acid content of dried higher aquatic plants from Lake Kotokel (Republic of Buryatia, Russia) and their potential as a raw material for the production of feed and biologically active food supplements. A modified Bligh-Dyer method was used to extract lipid fraction. Fatty acids in the form of their methyl esters were analysed by gas chromatography–mass spectrometry. Palmitic C16:0 acid was the main saturated fatty acid found in Myriophyllum sibiricum, Elodea canadensis, Persicaria amphibia and Potamogeton perfoliatus in Lake Kotokel. The main unsaturated acid found in plants, regardless of their type, was the α-linolenic C18:3-ω3 acid. In addition, a relatively high content of stearic C18:0, myristic C14:0 and pentadecanoic C15:0 acids was noted. Branched acids (i-C14:0, i-C15:0, i-C16:0, i-C17:0, i-C20:0, a/i-C15:0, a/i-C17:0 and 10Me-C16:0) and odd carbon numbered acids (C13:0, C15:0, C17:0, C19:0, C21:0 and C23:0) were identified. An analysis of the authors’ and literature data revealed that the studied species of higher aquatic plants in reservoirs in the Asian part of Russia are characterised by a high content of α-linolenic C18:3-ω3 (up to 56%) and a low content of oleic C18:1-ω9 (up to 1.81%) acids. The content of α-linolenic C18:3-ω3 acid in plants from reservoirs in the European part of Russia was lower (up to 42%), while that of oleic acid C18:1-ω9 was higher (up to 14%).

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3