Mathematical modeling of zinc concentrate roasting in a fluidized bed

Author:

Alkatsev V. M.1,Rutkovsky A. L.1,Makoeva A. K.1

Affiliation:

1. North Caucasian Mining and Metallurgical Institute (State Technological University)

Abstract

The paper aims to stabilize the roasting of zinc sulfide concentrates in fluidized-bed furnaces using oxygen- enriched air. The balance between the given excess air blast (on average 20%) and the amount of loaded charge is achieved by selecting an appropriate number of evaporative cooling elements in the fluidized-bed furnace. Through the evaluation of scientific and technical information, as well as literature sources on the research topic, data were collected on the effects produced by an oxygen excess in the blast on the quality of sulfide concentrate roasting and by a blast volume on the state of the fluidized bed. In addition, statistical data for the study were obtained by analyzing the operation of fluidized-bed furnaces at Electrozinc. As part of the study, the heat balance in roasting was determined, taking into account the following technical characteristics of fluidized-bed furnaces used for roasting zinc sulfide concentrates: fluidized- bed level, number of nozzles, furnace diameter, diameter in the bed zone, hearth thickness, and the total weight of the furnace. Relying on the operation analysis of fluidized-bed furnaces, a method was proposed to regulate the oxygen supply depending on the amount of loaded charge. The oxygen supply is regulated in order to ensure a stable excess of oxygen in the blast without causing any significant changes in the blast volume and, consequently, to maximize the sulfur removal from the charge. A decrease in the excess air blast below 15% was found to significantly degrade the quality of the resulting cinder and dust, while an increase of over 20% reduced the SO2 content in the exhaust gases with no noticeable improvement in the quality of cinder. Therefore, the proposed method for regulating the oxygen supply to the furnace can improve the techno-economic performance of zinc sulfide concentrate roasting in fluidized-bed furnaces.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3