Impact of distributed energy generation on energy supply to consumers in an integrated energy system

Author:

Barakhtenko E. A.1ORCID,Mayorov G. S.1ORCID

Affiliation:

1. Melentiev Energy Systems Institute SB RAS

Abstract

In this work, an approach for accounting and regulating the share of distributed generation in an integrated energy system is developed. In order to model an integrated energy system, a multi-agent approach was used, which presents a technologically complex system as a combination of agents, each having individual behaviour. The essence of a multi-agent approach is as follows: an integrated energy system is represented as a combination of components modelled by their agents having an individual behaviour algorithm; each element of an integrated energy system is involved in the generation of a solution and protects its interests on the basis of efficient energy supply. The implementation of this approach was carried out using the AnyLogic software environment, which includes the basic components of agent and simulation modelling, allowing any multi-agent systems to be developed depending on the application. The custom structure of the multi-agent system for integrated energy systems was developed, factoring in its performance features and interaction of objects, the main composition and types of agents of the multi-agent system being determined. The following types of agents were distinguished: consumer agent, dynamic consumer agent, network agent, manager agent of dynamic consumer, agent of centralised energy source, network agent and advisory agent. A multi - agent model of a real power supply system of a residential area in Irkutsk, having centralised and distributed energy sources, was developed. Taking into account the efficient operation of centralised energy sources, the principles for regulating the share of distributed generation in the system were proposed, allowing the total costs of energy supply to consumers to be reduced by rearranging power between centralised and distributed generation sources. The results obtained using the developed multi-agent model were used to formulate the principles of interactions of centralised and distributed energy generation sources. The redistribution of power between these energy sources on the basis of the above principles reduced the total costs by 4.22% for heat supply and 9.94% for electricity supply to consumers.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3