Investigating the effects of ambient temperature on photoelectric unit operation

Author:

Mestnikov N. P.1ORCID,Vasilyev P. F.1ORCID,Davydov G. I.2ORCID,Khoyutanov A. M.2ORCID,Alzakkar A. M.-N.3ORCID,Lobashev A. A.4ORCID

Affiliation:

1. M.K. Ammosov North-Eastern Federal University; V.P. Larionov Institute of the Physical-Technical Problems of the North SB RAS

2. V.P. Larionov Institute of the Physical-Technical Problems of the North SB RAS

3. Kazan State Power Engineering University

4. The Skolkovo Institute of Science and Technology (Skoltech)

Abstract

In this paper, effects of low and high ambient temperatures on the operation of a photoelectric unit are investigated. The research methodology consisted in determination of the energy efficiency of a photoelectric unit across a wide range of ambient temperatures, providing graphical interpretations and describing the procedure of field observations. Regularities in determining the average statistical indicators of energy efficiency rise and drop in a photoelectric unit were applied for a particular range of ambient temperatures. These studies were undertaken during the winter of 2021 in the Materials Science Laboratory of V.P. Larionov Institute of Physical-Technical Problems of the North, Siberian Branch of the Russian Academy of Sciences, using a fixed climate chamber. Reference parameters were obtained for changes in the photoelectric unit generating capacity (within -60ºC to +60ºC), which can be applied in modeling operational processes and engineering calculations of operating conditions of solar power plants. It was found that, at the same illumination and ambient temperature values, a photoelectric panel generates the maximum energy at -60ºC and minimal energy at +60 ºC, with the specific power drop for this temperature range being 19%. A significant drop in the specific power of the photoelectric unit was achieved at +30 ºC and higher due to the increased internal resistance of the unit. For temperatures below -40ºC, the specific power of the analyzed unit increased insignificantly due to the decreased internal resistance of the unit. The obtained values of the generating capacity of a photoelectric unit within a wide range of ambient temperatures can be used in developing a procedure for evaluating the effects of ambient temperature and its various ranges on the operation of photoelectric units, as well as for a more accurate determination of the solar generation energy potential under certain climate conditions. In future studies, field observations are planned to identify the nature of the effect of two and more climatic factors on the operation of a photoelectric unit.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3