Processing of experimental results for super-cavitating flow past cone by local polynomial regression (LOESS)

Author:

Grishaev D. A.1ORCID,Radzyuk A. Yu.1,Istyagina E. B.1

Affiliation:

1. Siberian Federal University

Abstract

The aim of the study is to define the correlations describing the flow parameters during super-cavitating flow past an obstacle, often found in various elements of thermal power systems and units, as well as to offer a simple and reliable method for analysing experimental datasets for the flows in such systems. Full-scale modelling of cavitation processes was carried out using a circulating hydrodynamic set-up. The process of super-cavitation flow past cones with base diameters of15.45 and 21.75 mm and opening angles of 154° and 127°, respectively, in a working section having a diameter of 30 mm, was investigated. The obtained experimental data comprises a four-dimensional array that describes the dependence of the cavity length arising behind the obstacle and the pressure inside the cavity on the flow rate and temperature. Due to the complexity of processing and visual representation, this array was divided into two three-dimensional arrays. The approximation of the obtained data was carried out by locally estimated scatterplot smoothing (LOESS). The results demonstrated that the transition from vapour–gas to vapour cavitation is independent of the geometric dimensions of the obstacle. In addition, the dependence corresponding to the transition process to vapour cavitation was obtained by processing the experimental data. An empirical equation describing such a transition is proposed. Therefore, the method of smoothing a locally estimated scatter plot (local polynomial regression) illustrates the correlation between the processed data. The proposed empirical equation allows the critical length of the cavity to be determined that corresponds to the transition from vapour–gas to vapour cavitation and can be used for the design and operation of thermal power equipment.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3