Application a solid fuel mixture based on Bolshesyrsky lignite and birch wood waste in power plants

Author:

Zhuikov A. V.1ORCID,Matyushenko A. I.1,Stepanov S. G.2

Affiliation:

1. Siberian Federal University

2. JSC «SUEK-Krasnoyarsk»

Abstract

In this paper, we investigate the possibility of using a solid fuel mixture based on lignite from the Bolshesyrsky coal mine and birch wood waste in power plants, taking synergistic interactions between the mixture components into account. Simultaneous thermal analysis was used to determine the main combustion characteristics of lignite, biomass and their mixtures. Non-isothermal heating was performed at a rate of 20°C/min across the temperature range of 25–800°C under the air flow of 50 ml/min. The sample weight was about 6 mg. Proximate and elemental analyses of lignite and biomass samples were performed according to conventional methods. The advantages and disadvantages of converting power plants operated on solid fossil fuels to a solid fuel mixture of lignite and biomass are discussed. The main combustion characteristics of lignite, biomass and their mixtures were defined. The ignition temperature of the coke residue and biomass was found to comprise 365 and 299°C, respectively. The temperature of combustion completion for lignite and biomass was 551 and 464°C, respectively. In comparison with lignite, biomass burns at lower temperatures due to the high content of volatile substances. The addition of biomass to lignite was found to reduce both the ignition temperature of the coke residue and that of combustion completion. An analysis of the combustion process of volatile substances and coke residue established the presence of both positive and negative synergistic interactions between lignite and biomass particles, affecting the maximum combustion rate and the mixture reactivity. The results obtained can be applied when designing power plants operated on solid fuel mixtures of lignite and biomass.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3