On the question of using solid electrodes in the electrolysis of cryolite-alumina melts. Part 2. The mechanism of passivation and conditions of stable electrolysis

Author:

Gorlanov Е. S.1

Affiliation:

1. EXPERT-AL LLC

Abstract

 The aim was to investigate the mechanism of passivation of polycrystalline cathodes and to justify experimentally the possibility of stable electrolysis when using solid electrodes. Under laboratory conditions, the mechanism of electrode passivation and the conditions for stable electrolysis were experimentally studied. To this end, the methods of X-ray phase analysis and electron-microscopic examination of the spent electrodes were employed. A study of the electrolysis of cryolite-alumina melts showed that, in the presence of surface micro- and microdefects on a solid cathode, a precipitate consisting of impurities and electrolyte components was gradually formed. Under the selected experimental conditions, the surface of carbon cathodes was passivated with a dense double-layer precipitate of CaB6 and electrolyte components. Using the example of a carbon cathode containing both metallic titanium and titanium oxides, a method for eliminating surface microdefects is presented. This method consists in electrochemical borating of a carbon-titanium cathode. The conducted spectral electron microscopic and energy-dispersive analysis found that, during a 45-hour laboratory experiment at 980 °C and under a current density of 0.7 A/cm2, the inhomogeneous surface of the cathode was homogenized with a titanium diboride layer. At stable electrolysis parameters, an aluminum layer is electrodeposited on the cathode. A complex analysis of the electrolysis conditions, the appearance of the initial and spent carbon cathodes, and the data of analytical studies confirmed that micro- and macrodefects of the electrode cause the formation of a dense layer of deposits on the cathode. The established mechanism of passivation of a carbon cathode as a polycrystalline product can be applied to all composite electrodes, including those based on titanium diboride. A logical condition for the practical application of solid cathodes is the development of an electrolysis process with continuous surface reconditioning to decrease the chemical inhomogeneity and microdefects of the surface across the entire technological sequence. 

Publisher

Irkutsk National Research Technical University

Subject

General Medicine

Reference22 articles.

1. Héroult PLT. Procédé électrolytique pour la préparation de l’aluminium. Patent FR, no. 175711; 1886.

2. Hall CM. Process of Reducing Aluminum by Electrolysis. Patent US, no. 400766; 1889.

3. Hall CM. Process of electrolyzing fused salts of aluminium. Patent US, no. 400667; 1889.

4. Haupin W, Frank W. Current and energy efficiency of Hall-Heroult cells - past, present and future. Light Metal Age. 2002;60(5-6):6–13.

5. Vanvoren C, Homsi P, Basquin JL, Beheregaray T. AP 50: The Pechiney 500 kA Cell. In: Bearne G, Dupuis M, Tarcy G (eds.). Essential Readings in Light Metals. Springer, Cham; 2016, р. 462–467. https://doi.org/10.1007/978-3-319-48156-2_66

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3