A new criterion of asymptotic stability for Hopfield neural networks with time-varying delay

Author:

Guo Weiru1ORCID,Liu Fang1ORCID

Affiliation:

1. Central South University

Abstract

The objective of this paper is to analyze the stability of Hopfield neural networks with time-varying delay. For the system to operate in a steady state, it is important to guarantee the stability of Hopfield neural networks with time-varying delay. The Lyapunov-Krasovsky functional method is the main method for investigating the stability of time-delayed systems. On the basis of this method, the stability of Hopfield neural networks with time-varying delay is ana-lysed. It is known that due to such factors as communication time, limited switching speed of various active devices, time delays often arise in various technical systems, which significantly degrade the performance of the system, which can in turn lead to a complete loss of stability. In this regard, a Lyapunov-Krasovsky type delay-product functional was con-structed in the paper, which allows more information about the time delay and reduces the conservatism of the method. Then a generalized integral inequality based on the free matrix was used. A new criterion for asymptotic stability of Hop-field neural networks with time-varying delay, which has less conservatism, was formulated. The effectiveness of the proposed method is illustrated. Thus an asymptotic stability criterion for Hopfield neural networks with time-varying delay was formulated and justified. The expanded Lyapunov-Krasovsky functional is constructed on the basis of delay and quadratic multiplicative functional, and the derivative of the functional is defined by a matrix integral inequality with free weights. The effectiveness of the method is illustrated by a model example.

Publisher

Irkutsk National Research Technical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3