Enhancing Agriculture Crop Classification with Deep Learning

Author:

Mohialden Yasmin MakkiORCID,Hussien Nadia MahmoodORCID,Salman Saba AbdulbaqiORCID,Ahmed Bahaaulddin A. Alwahhab ,Mumtaz Ali

Abstract

To classify rice crops, the paper applies deep learning to agricultural crop images to classify rice crops. The collection includes images of wheat, rice, sugarcane, jute, and maize. We improved variety by horizontally flipping, rotating, and shifting rice image data sets. A CNN structure classifies rice and non-rice crops. The model has 100% accuracy on training and testing datasets; however, the classification report shows label imbalance problems for precision, recall, and F-score. Deep learning can help classify crops as well as make decisions in agriculture based on research. The study recommends more studies and improvements to enhance model performance and address dataset concerns. The research advances agricultural technology and emphasizes machine learning for crop management and production.

Publisher

Mesopotamian Academic Press

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3