Optimal Time Window Selection in the Wavelet Signal Domain for Brain–Computer Interfaces in Wheelchair Steering Control

Author:

Al-Qaysi Z.T.ORCID,Suzani M. SORCID,Bin Abdul Rashid NazreORCID,Aljanabi Rasha A.ORCID,Ismail Reem D.ORCID,Ahmed M.A.ORCID,Sulaiman Wan Aliaa WanORCID,Kumar HarishORCID

Abstract

Background and objective: Principally, the procedure of pattern recognition in terms of segmentation plays a significant role in a BCI-based wheelchair control system for avoiding recognition errors, which can lead to the initiation of the wrong command that will put the user in unsafe situations. Arguably, each subject might have different motor-imagery signal powers at different times in the trial because he or she could start (or end) performing the motor-imagery task at slightly different time intervals due to differences in the complexities his or her brain. Therefore, the primary goal of this research is to develop a generic pattern recognition model (GPRM)-based EEG-MI brain-computer interface for wheelchair steering control. Additionally, having a simplified and well generalized pattern recognition model is essential for EEG-MI based BCI applications. Methods: Initially, bandpass filtering and segmentation using multiple time windows were used for denoising the EEG-MI signal and finding the best duration that contains the MI feature components. Then, feature extraction was performed using five statistical features, namely the minimum, maximum, mean, median, and standard deviation, were used for extracting the MI feature components from the wavelet coefficient. Then, seven machine learning methods were adopted and evaluated to find the best classifiers. Results: The results of the study showed that, the best durations in the time-frequency domain were in the range of (4-7 s). Interestingly, the GPRM model based on the LR classifier was highly accurate, and achieved an impressive classification accuracy of 85.7%.

Publisher

Mesopotamian Academic Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3