Influence of geological and hydrogeological settings in assessing the stability of a landslide slope in the Tutrakan area, Northeastern Bulgaria

Author:

Angelov Lyubomir,Vasileva TanyaORCID

Abstract

The study is focused on the assessment of the stability of the lower part of the right slope of the Danube River. The research area is situated in the town of Tutrakan, Northeastern Bulgaria. The present study investigates the likelihood of activating landslide processes due to construction works on the water supply and sewerage network of the town, as well as the influence of the natural geological and hydrogeological settings of the region. The research area is part of the Danubian Plain. The groundwater level lies between 7 and 26 m below the surface, in the sandy sediments and limestones of the Pliocene that form the semi-confined to unconfined aquifer. They are mainly formed by infiltration of precipitation through the loess layer. The groundwater discharge is carried out naturally and technogenically towards the Danube, through a herringbone system of drains built in the toe of the landslide cirques. The assessment of the slope stability was made for the different hypotheses – natural (momentous – including the existing buildings), constructional (including excavations), primary and specific (including seismic forces) combination of stresses. The different geodynamic models, taking into account the influence of groundwater, the influence of different destabilizing factors and seismic impact, show that the slope, as well as the studied sections of it – the landslide cirques, are in a stabilized state, with safety coefficients (Fs > 1). According to the mechanism of deformation, the landslides are classified as a translational slide, and deep seated according to the depth of the slip zone. They are contemporary and currently active. The study confirms the hypothesis of the origin of the landslide masses in the area, formed as a mixture of loess material and Pliocene clays. The groundwater level is directly related to the current state of the landslide slope stability.

Publisher

Geological Institute, Bulgarian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3