Design and finite element analysis of a 3D-printed packaging insert

Author:

Muñoz Salazar Ismael AlejandroORCID,Garduño Olvera Isaías EmmanuelORCID,Del Angel-Monroy MayraORCID

Abstract

Packaging inserts play a crucial role in protecting products during transportation. However, their design and production processes often rely on conventional methods limiting equipment capabilities. Moreover, the empirical nature of their design can result in a lack of reliability in the final product. To address these challenges, this study aimed to validate the design of a packaging insert using the finite element method and subsequently create it using 3D printing. The chosen material is a thermoplastic polyurethane (TPU) filament commonly used in fused deposition filament printers for 3D printing. This process demonstrates the feasibility of using 3D printing to create cushioning inserts for packaging and employing finite element analysis to simulate the insert behavior. The main findings of this research highlight the potential benefits of numerical simulation, revealing the areas where the insert is primarily impacted by weight. Furthermore, the forces load and displacement simulation results confirm that the TPU elastic limit (3.9x106 MPa) is sufficient to handle the weight this insert intends to hold. These tools determine the viability of the proposed design for its intended application. Therefore, this study verifies that 3D printing is a reliable option for producing packaging inserts, offering significant advantages over traditional methods. These advantages include increased design flexibility and the ability to create custom inserts on demand.

Publisher

Facultad de Ciencias de la Ingenieria y Tecnologia de la UABC

Subject

Energy Engineering and Power Technology,Fuel Technology

Reference37 articles.

1. United Parcel Service of America, "UPS," [Online]. Available: https://www.ups.com/us/en/home.page. [Accessed: Apr. 5, 2023].

2. A. Emblem, Ed., Packaging Technology: Fundamentals, Materials, and Processes. Elsevier, 2012.

3. R. Hernandez, S. Selke, and J. Culter, Plastics Packaging. Munich: Hanser, 2000.

4. G. Giles and D. Bain, Eds., Technology of Plastics Packaging for the Consumer Market. Oxford, UK: Wiley, 2001.

5. N. Theobald and B. Winder, "Packaging Closures and Sealing Systems," Sheffield Academic Press, Sheffield, 2006. [Online]. Available: http://www.sheffieldacademicpress.com/books/technology/packaging-closures-and-sealing-systems. [Accessed: Apr. 5, 2023].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3