1. A. Jangid and S. Kumar, “Modelling and Simulation Analyses for Bending Stresses in Involute Spur Gears by Finite Element Method,” International Journal of Applied Engineering Research, vol. 13, no. 12, pp. 10914-10923, 2018. https://www.ripublication.com/ijaer18/ijaerv13n12_111.pdf.
2. Q. Wen, Q. Du and X. Zhai, “An analytical method for calculating the tooth surface contact stress of spur gears with tip relief,” International Journal of Mechanical Sciences, vol. 151, pp. 170-180, 2019. https://doi.org/10.1016/j.ijmecsci.2018.11.007
3. J. Eng, S. Karuppanan and S. Patil, “Frictional stress analysis of spur gear with misalignments,” Journal of Mechanical Engineering and Sciences, vol. 12, no. 2, pp. 3566-3580, 2018. https://doi.org/10.15282/jmes.12.2.2018.4.316
4. Z. Hu and K. Mao, “An investigation of misalignment effects on the performance of acetal gears,” Tribology International, vol. 116, pp. 394-402, 2017. https://doi.org/10.1016/j.triboint.2017.07.029
5. N. Ghazaly, A. Kamel and M.O. Mousa, “Influence of misalignment and backlash on spur gear using fem,” International Journal of Mechanical and Production Engineering, vol. 2, no. 12, 2014. https://www.semanticscholar.org/paper/INFLUENCE-OF-MISALIGNMENT-AND-BACKLASH-ON-SPUR-GEAR-Ghazaly-KAMEL/e9066a5e1f15c0d53b605813767c597e4d099472.