Distribution of antimonium chalcogenides under conditions of vacuum thermal processing of mattes

Author:

Volodin V.N., ,Trebukhov S.A.,Nitsenko A.V.,Burabayeva N.M.,Linnik X.A., , , , , ,

Abstract

It was established based on the analysis of the results of published works and the results obtained by the authors that there is no information on the behavior and distribution of antimony chalcogenides - Sb2S3, Sb2Se3, Sb2Te3, as well as double systems - Sb2S3-Sb2Se3, Sb2S3-Sb2Te3 and Sb2Se3-Sb2Te3 under the vacuum processing conditions for polymetallic mattes performed at 1100-1250 °C and a vacuum of 15 - 0.7 kPa. It was found based on the saturated vapor pressure values for monochalcogenides that the vapor pressure of free antimony sulfide will be 58.95 kPa at 1100 °C, i.e. the lower limit of the technological interval, which indicates its complete transfer to the vapor phase when the mattes are evacuated; the vapor pressure of free antimony selenide at 1100 °C exceeds the atmospheric pressure value (101.3 kPa), and Sb2Se3 would be completely extracted into the vapor phase in vacuum; the boiling point of liquid antimony telluride at atmospheric pressure corresponds to 971 °C, and it would be extracted into the vapor phase under the conditions of matte evacuation. The thermodynamic evaporation characteristics of antimony chalcogenides were found. It was concluded based on the location of the boundaries of the liquid and vapor phase coexistence fields that it is impossible to separate binary systems of antimony chalcogenides into separate compounds in the process of one evaporation cycle – condensation, in binary systems. Different effects of pressure reduction over melts were found. Lowering the pressure from atmospheric one to 0.7 kPa in Sb2S3-Sb2Se3 system did not change the position of the boundaries of the liquid and vapor fields (L + V) under the temperature; field width (L+V) decreases with decreasing pressure in Sb2S3-Sb2Te3 system; the field width first decreases with temperature, then increases in system Sb2Se3- Sb2Te3. At the same time, the position of the boiling curves of antimony chalcogenide solutions indicates the complete transfer of compounds into the vapor phase under the conditions of matte distillation processing (at 1100-1250 °C) at atmospheric pressure which is important for assessment of the distribution of antimony and rare metals - selenium and tellurium by processed products.

Publisher

Institute of Metallurgy and Ore Benefication (Publications)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3