Abstract
The results of heat transfer mathematical model calculations in the “UO2-BeO” pellet are presented. The fuel pellet consists of uranium dioxide (UO2) and beryllium oxide (BeO) ceramics. Modeling of heat transfer was carried out by a system of generalized heat conduction equations with variable thermophysical properties. The calculated data of the temperature field in the fuel pellet were obtained using the COMSOL Multiphysics software code. The results of temperature calculations were compared with the data of other authors. The agreement of the calculated data shows the mathematical model and the COMSOL Multiphysics code algorithms correctness. Various arrangements of beryllium oxide ceramics BeO in a fuel pellet are considered. The arrangement of the BeO ceramics in the centre of the fuel pellet showed a noticeable decrease in temperature in the energy release zone. Calculations have shown that the composite fuel “UO2-BeO” is the most effective for regulating the thermal regime of fuel elements.
Publisher
Institute of Metallurgy and Ore Benefication
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献