Depletion of converter slags to waste in the Vanyukov furnace during pyrometallurgical copper production at JSC Almalyk MMC

Author:

,Yakubov M.M.,Yoqubov M.M., ,Kholikulov D.B., ,Maksudhodjaeva M.S.,

Abstract

The article shows the possibility of involving man-made formations in the pyrometallurgical production of copper in the form of slag and clinker-zinc production for the purpose of comprehensive extraction of non-ferrous and precious metals from them at Almalyk MMC JSC. Clinker, a technogenic waste from zinc production, contains a significant amount of reducing elements in the form of metallic iron and carbon, as well as gold in the amount of 2.3 g/t and silver 250 g/t. In research, clinker works as a reducer of magnetite contained in the converter slag during its depletion and in the process of depletion (reduction) of the converter slag, noble metals are extracted into matte, and then into blister copper up to 95-98%. Converter slags from copper production of Almalyk MMC JSC contain 2.0-3.5% copper, and they, as a circulating product, are depleted in a reverberatory furnace with copper extraction of 75%. To increase the yield of copper from converter slag in Vanyukov furnaces, it is necessary to first deplete the converter slag in reduction processes and then transfer it for processing. It was found that using clinker, a technogenic waste from zinc production with a particle size of +5 - -10 mm, the recovery of converter slag in a converter from magnetite to wustite using the developed technology in 10-15 minutes exceeded more than 50.0% (the amount of magnetite decreased from 21.9 % to 9.8%). As a result of processing recovered converter slags in the Vanyukov furnace, it was possible to reduce the copper content in converter slags of copper production from 2.2-3.5% to 0.58-0.72% in waste slag. To increase the yield of copper from converter slag in the reverberatory and Vanyukov furnaces, it is necessary to first deplete the converter slag in reduction processes and then transfer it for processing.

Publisher

Institute of Metallurgy and Ore Benefication (Publications)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3