Abstract
Recently, the search for an effective method for producing ultrapure hydrogen has been one of the most urgent tasks, which allows us to solve industrial problems where the use of hydrogen with a purity of more than 99.9999% is critical. Hydrogen makes up 10% of the mass of living systems on our planet, but the main source of its production is carbon raw materials, in particular natural gas, from which ≥90% of the world's hydrogen is produced. One of the most promising methods for the evolution of hydrogen from gas mixtures resulting from steam reforming is single-stage membrane separation to produce ultrapure hydrogen. The development of a membrane for separating hydrogen from gas mixtures is one of the most important tasks of hydrogen energy. We know that the hydrogen molecule is diatomic - H2. Under normal conditions, it is a gas without color, odor or taste. Hydrogen is readily soluble in many metals (Ni, Pt, Pd, etc.), especially in palladium (850 volumes of H2 per 1 volume of Pd). The solubility of hydrogen in metals is associated with its ability to diffuse through them.
Publisher
Institute of Metallurgy and Ore Benefication
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献