Abstract
This paper studies the impact of rapidly flowing impulse effect of electrolytic plasma oxidation on physical and mechanical specifications of oxide coatings through the surface modification of VT1-0 titanium alloy. The present mode allows obtaining dense coatings with high mechanical properties. The electrolytic plasma oxidation process implementation leads to a micro arc-discharge emergency in a short period through the small duration values of 250 µs anodic impulse. The achieved oxide coatings have high wearing features. Frictional testing resulted in wearing features increase in 4-15 times comparing to the sample off coating at to15 µm oxide layer thickness. Friction coefficient curves of oxide coating samples have shown no destruction of the coating to the bottom. A run-in area is recognized on the curves; sliding surfaces adapt to each other and pass to the stable friction regime. The later leads to the friction coefficient reduce and wear intensity reduction.
Publisher
Institute of Metallurgy and Ore Benefication
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献