Non-parametric analysis of maintenance data for Attitude Indicator of a commercial aircraft fleet

Author:

KAPAN ULUSOY Selda1ORCID,ŞAŞMAZTÜRK Mahmut Sami2ORCID

Affiliation:

1. ERCIYES UNIVERSITY

2. İSKENDERUN TEKNİK ÜNİVERSİTESİ

Abstract

Analysis of maintenance data for a repairable system provides information about the failure behavior of the system. Such information is needed for determining preventive maintenance and retirement policy for the system. Parametric and non-parametric models can be used for analysis. Parametric models require more assumptions about the failure process of the systems under consideration compared to non-parametric models. To verify these assumptions statistical expertise needed. The purpose of this paper is to show that in practice non-parametric estimator of mean cumulative function can be utilized easily to model the failure behavior of a fleet. Mean cumulative function estimates the mean number of failures as function of operating hours. The method is exemplified on the attitude indicator units of a commercial aircraft fleet. Sampling uncertainty of the estimates is quantified by normal approximation confidence intervals.

Publisher

International Advanced Researches and Engineering Journal

Subject

Pharmacology (medical)

Reference28 articles.

1. 1. Cha, J.H. and M. Finkelstein, Point Processes for Reliability Analysis: Shocks and Repairable Systems, in Point Processes for Reliability Analysis: Shocks and Repairable Systems. 2018, Springer: New York. p. 1-419.

2. 2. Lawless, J., Statistical methods in reliability. Technometrics, 1983. 25(4): p. 305-316.

3. 3. Nelson, W., Graphical analysis of system repair data. Journal of Quality Technology, 1988. 20(1): p. 24-35.

4. 4. Trindade, D. and S. Nathan. Simple plots for monitoring the field reliability of repairable systems. in Annual Reliability and Maintainability Symposium, 2005. Proceedings. 2005. IEEE.

5. 5. Block, J., et al., Fleet-level reliability analysis of repairable units: a non-parametric approach using the mean cumulative function. International Journal of Pedagogy, Innovation and New Technologies, 2013. 9(3): p. 333-344.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3