Examining the hydrophobic properties of electrospun oxide-induced polystyrene nanofibers for application in oil-water separation

Author:

DOĞAN Kemal1,HUSSAINI Ali Akbar2,ERDAL Mehmet Okan3,YILDIRIM Murat2

Affiliation:

1. Selcuk University, Institute of Science, Department of Nanotechnology and Advanced Materials, Konya, 42130, Turkey

2. Selçuk University, Faculty of Science, Department of Biotechnology, Konya, 42130, Turkey

3. Necmettin Erbakan University, Meram Vocational School, Konya, 42090, Turkey

Abstract

Nanofibers have great importance in the membrane technology used in hydrophobic surface filtration studies applied to water-oil separation products. This study improves upon the hydrophobic properties of electrospun polystyrene-based nanofibers by increasing surface contact angles. As a result, nanofibers have been produced by adding ZnO, MoO3, NiO, SiO2, and TiO2 additives to the polystyrene (PS)/dimethylformamide (DMF) polymer solution at 5% of the mass. Surface contact angle (CA), fourier-transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) images of the nanofibers were taken. The obtained results were evaluated and show the fiber diameter to range from 555 to 1553 nm. The addition process was observed to be able to affect the polystyrene fiber’s ability to retain water. Moreover, surface contact angle of polystyrene increased to 143° by TiO2 addition. Furthermore, the highest oil-carrying capacity is concluded to have been observed on the SiO2 and MoO3 doped fibers.

Publisher

International Advanced Researches and Engineering Journal

Subject

Pharmacology (medical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3