Abstract
In this paper, we shall show that the following translation \(I^M\) from the propositional fragment \(\bf L_1\) of Leśniewski's ontology to modal logic \(\bf KTB\) is sound: for any formula \(\phi\) and \(\psi\) of \(\bf L_1\), it is defined as
(M1) \(I^M(\phi \vee \psi) = I^M(\phi) \vee I^M(\psi)\),
(M2) \(I^M(\neg \phi) = \neg I^M(\phi)\),
(M3) \(I^M(\epsilon ab) = \Diamond p_a \supset p_a . \wedge . \Box p_a \supset \Box p_b .\wedge . \Diamond p_b \supset p_a\),
where \(p_a\) and \(p_b\) are propositional variables corresponding to the name variables \(a\) and \(b\), respectively. In the last, we shall give some comments including some open problems and my conjectures.
Publisher
Uniwersytet Lodzki (University of Lodz)
Reference19 articles.
1. [1] L. Aqvist, Deontic logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 605–714, DOI: https://doi.org/10.1007/978-94-009-6259-0
2. [2] A. Blass, A faithful modal interpretation of propositional ontology, Mathematica Japonica, vol. 40 (1994), pp. 217–223.
3. [3] G. Boolos, The Logic of Provability, Cambridge University Press, Cambridge (1993), DOI: https://doi.org/10.1017/CBO9780511625183
4. [4] R. A. Bull, K. Segerberg, Basic modal logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 1–82, DOI: https://doi.org/10.1007/978-94-009-6259-0
5. [5] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford (1997).