Abstract
We construct free algebras in the variety generated by the equivalential algebra with conjunction on dense elements and compute the formula for the free spectrum of this variety. Moreover, we describe the decomposition of free algebras into directly indecomposable factors.
Publisher
Uniwersytet Lodzki (University of Lodz)
Reference9 articles.
1. P. M. Idziak, K. Słomczyńska, Polynomially rich algebras, Journal of Pure and Applied Algebra, vol. 156(1) (2001), pp. 33–68, DOI: https://doi.org/10.1016/S0022-4049(99)00119-X.
2. J. K. Kabziński, A. Wroński, On equivalential algebras, [in:] Proceedings of the 1975 International Symposium on Multipe-Valued Logic, Indiana University, Bloomington, Indiana, IEEE Comput. Soc., Long Beach (1975), pp. 419–428.
3. P. Köhler, Brouwerian semilattices, Transactions of the American Mathematical Society, vol. 268(1) (1981), pp. 103–126, DOI: https://doi.org/10.1090/S0002-9947-1981-0628448-3.
4. S. Przybyło, Equivalential algebras with conjunction on the regular elements, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, vol. 20 (2021), pp. 63–75, DOI: https://doi.org/10.2478/aupcsm-2021-0005.
5. S. Przybyło, K. Słomczyńska, Equivalential algebras with conjunction on the regular elements, Bulletin of the Section of Logic, vol. 51(4) (2022), pp. 535–554, DOI: https://doi.org/doi.org/10.18778/0138-0680.2022.22.