Abstract
This paper is about non-labelled proof-systems for hybrid logic, that is, proofsystems where arbitrary formulas can occur, not just satisfaction statements. We give an overview of such proof-systems, focusing on analytic systems: Natural deduction systems, Gentzen sequent systems and tableau systems. We point out major results and we discuss a couple of striking facts, in particular that nonlabelled hybrid-logical natural deduction systems are analytic, but this is not proved in the usual way via step-by-step normalization of derivations.
Publisher
Uniwersytet Lodzki (University of Lodz)
Reference23 articles.
1. M. Baaz, A. Leitsch, Methods of Cut-Elimination, vol. 34 of Trends in Logic Series, Springer, Dordrecht (2011), DOI: https://doi.org/10.1007/978-94-007-0320-9
2. G. Bierman, V. de Paiva, On an Intuitionistic Modal Logic, Studia Logica, vol. 65 (2000), pp. 383–416, DOI: https://doi.org/10.1023/A:1005291931660
3. P. Blackburn, T. Bolander, T. Braüner, K. Jørgensen, Completeness and Termination for a Seligman-style Tableau System, Journal of Logic and Computation, vol. 27(1) (2017), pp. 81–107, DOI: https://doi.org/10.1093/logcom/exv052
4. T. Braüner, Two Natural Deduction Systems for Hybrid Logic: A Comparison, Journal of Logic, Language and Information, vol. 13 (2004), pp. 1–23, DOI: https://doi.org/10.1023/A:1026187215321
5. T. Braüner, Hybrid Logic, [in:] E. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Stanford University (2005), URL: http://plato.stanford.edu/entries/logic-hybrid, substantive revision in 2017.