Abstract
The goal of this study is offer a deep understanding of the landscape dynamics in the Gorgan Township, the Golestan Province, Iran. Landsat satellite imagery of two different time thresholds, i.e. the years 1992 and 2011, was acquired from the US Geological Survey database and the changes were quantified for the Gorgan area covering a 19-year time span. Furthermore, an integrated Cellular Automata-Markov Chain (CA-MC) model was applied to predict future changes up to the year 2030. We used the intensity analysis method to compare the historical dynamics of different land categories at multiple levels. The results indicated that during the 19 years, the built-up and forest areas increased by 2.33% and 0.27%, respectively, while agriculture and remnant vegetation decreased by 2.43% and 0.24%, respectively. The CA-MC model illustrated that in the following 19 years, the built-up areas could increase by 2.45%. An intensity analysis revealed that forest gains and losses were dormant while remnant vegetation gains and losses were active. The built-up area’s gains and water bodies’ losses were active and stationary during both time intervals. The transitions from water bodies and remnant vegetation to agriculture were regularly targeting and stationary, while the transition from forest to agriculture was regularly avoiding and stationary. Our findings also indicated a heavy systematic transition from agriculture to built-up areas. Regarding the increasing population growth and urbanisation in the region, the outcomes of this study can help make informed decisions for the management and protection of natural resources in the study area.
Publisher
Uniwersytet Lodzki (University of Lodz)
Subject
Geography, Planning and Development
Reference41 articles.
1. ABD EL-KAWY, O.R., RØD, J.K., ISMAIL, H.A. and SULIMAN, A.S., (2011) ‘Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data’, Appl Geogr, 31, pp. 483–494. https://doi.org/10.1016/j.apgeog.2010.10.012
2. ALDWAIK, S.Z. and PONTIUS, R.G.Jr., (2012), ‘Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition’, Landscape and Urban Planning, 106, pp. 103–114. https://doi.org/10.1016/j.landurbplan.2012.02.010
3. ALDWAIK, S.Z. and PONTIUS, R.G.Jr. (2013), ’Map errors that could account for deviations from a uniform intensity of land change’, International Journal of Geographical Information Science, 27 (9), pp. 1717–1379. https://doi.org/10.1080/13658816.2013.787618
4. BHAGAWAT, R. (2011), ‘Application of remote sensing and GIS, land use/land cover change in Kathmandu metropolitan city’, Nepal J. Theor. Appl. Inform. Technol, 23 (2), pp. 80–86.
5. CHANDER, G., MARKHAM, B.L. and HELDER, D.L. (2009), ‘Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors’, Rem. Sen. Envi, 113 (5), pp. 893–903. https://doi.org/10.1016/j.rse.2009.01.007