Marketing Research : The Application of Auto Sales Forecasting Software to Optimize Product Marketing Strategies

Author:

Bakri Rizal,Data Umar,Saputra Andika

Abstract

The aims of this study is to apply the Auto Sales Forecasting software to predict sales transaction data. The Auto Sales Forecasting software consists of two main features namely descriptive analysis and forcasting features along with its visualization. Forecasting methods contained in the Auto Sales Forecasting application are forecasting methods of Simple Moving Average, Robust Exponantial Smoothing, Auto ARIMA, Artificial Neural Network, Holt-Winters, and Hybrid Forecast. The Auto Sales Forecasting software can intelligently choose the best forecasting method based on RMSE values. The results showed that the Auto Sales Forecasting software successfully analyzed the sales transaction data. From the analysis it was found that there were 43 types of products produced and sold by the Futry Bakery & Cake Store. Three of them are the types of products that are most in demand by consumers, namely Sweet Bread, Maros Bread, and Traditional Cakes 3500. The best selling product type, Sweet Bread, is used to build forecasting models. The best forecasting method is the Robust Exponential Smoothing method with the smallest RMSE value of 0.83 on the variable number of sold out products. Forecasting results using the Robust Exponantial Smoothing method show that the average number of products to sell for the next seven days ranges from 116 products with a certain confidence interval value.

Publisher

Yayasan Ahmar Cendekia Indonesia

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference15 articles.

1. Assauri S. 2013. Manajemen Pemasaran. Raja Grafindo : Depok

2. Bakri R, Halim A, Astuti NP. 2018. Sistem Informasi Strategi Pemasaran Produk dengan Metode Market Basket Analysis dan Sales Forecasting : Swalayan Kota Makassar. Jurnal Manajemen Teori dan Terapan 11(2): 89-106

3. Swastha, Basu, dan Irawan. 2008. Manajemen Pemasaran Modern. Yogyakarta: Liberty.

4. Montgomery DC, Jennings CL, Kulahci M. 2008. Introduction to Time Series Analysis and Forecasting. John Wiley & Sons, Inc : Hoboken, New Jersey.

5. Crevits R & Croux C. 2016. Forecasting with Robust Exponential Smoothing with Damped Trend and Seasonal Components. SSRN : KBI_1741 https://dx.doi.org/10.2139/ssrn.3068634

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3