New insights into retention aids dosage and mixing

Author:

Krochak Paul1,Schack Susanne1,Fasci Giuseppe1

Affiliation:

1. Innventia AB, Drottning Kristinas väg 61, Box 5604, Stockholm , Sweden

Abstract

Abstract In this work, critical design and operational parameters for retention aids dosage are studied through a combination of computational fluid dynamics (CFD), experimentation and pilot-scale production trials. In the first part of this work, three different retention aids dosage strategies are investigated in conjunction with pilot scale production trials. In all dosage strategies, a maximum in the percentage filler retention was observed at a speed ratio of 1.1, while considerably lower retention levels were observed when the speed ratio was greater than 2.2. However, the different dosage strategies led to markedly different retention of filler material. In the second part of this work, two-phase computational fluid dynamics (CFD) was used to model the three different dosage strategies implemented in the pilot production trials. The location and magnitude of maximum strain in each nozzle was determined and for each dosage case this was found to occur just outside the dosage nozzle at the point of impingement between the dosage and outer flows. In the third part of this work, conditions leading to the onset of retention polymer degradation were determined using an experimental flow loop. The effect of dosage speed and elongational strain created inside the dosage nozzle were studied systematically. These experiments showed that the effect of relative dosage velocity on polymer degradation was minimal. However, large levels of polymer degradation were observed when the elongational strain in the dosage nozzle was increased, i.e. when the exit nozzle diameter was decreased. Together, the three sets of experiments suggest that elongational strain during dosage degrades retention aids polymers and therefore hinders filler retention during production.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3