Conductivity of inkjet-printed PEDOT:PSS-SWCNTs on uncoated papers

Author:

Angelo Peter D.1,Farnood Ramin R.1,Sodhi Rana N.1,Cole Gregory B.2

Affiliation:

1. University of Toronto, Department of Chemical Engineering, College St., Toronto , Canada

2. University of Waterloo, Department of Chemistry, University Ave. W., Waterloo , Canada

Abstract

Abstract Poly(3,4-ethylenedioxythiopene): poly (styrene-sulfonate), or PEDOT:PSS, as well as singlewalled carbon nanotubes, were incorporated into an inkjet ink. Handsheets were prepared which contained varying amounts of TiO2filler, internal sizing agent, fixation agent, and either softwood or hardwood kraft pulp. The ink was jetted onto the handsheets to form conductive layers with apparent conductivity as high as 0.018 S/cm on internally alkyketene dimer-sized softwood kraft handsheets with no other additives. Internal sizing increased conductivity at low filler loadings by preventing PEDOT:PSS from penetrating into the substrate, resulting in a conductive ink film on the surface of the sample. Unsized handsheets allowed more rapid absorption, and therefore deeper penetration, of the PEDOT:PSS ink, which resulted in a more diffuse conductive layer. The inclusion of a polyethyleneimine retention aid for TiO2filler decreased conductivity significantly even in unfilled sheets by interaction with PSS-counterions. A positively charged fixation agent, poly(diallyldimethylammonium) chloride, reduced PEDOT conductivity through the retention of nonconductive PSS-anions.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3