Mechanical retention – Influence of filler floc size and grammage of the fibre web

Author:

Athley Karin1,Granlöf Lars1,Söderberg Daniel1,Ankerfors Mikael1,Ström Göran1

Affiliation:

1. Innventia AB, Box 5604, Stockholm , Sweeden

Abstract

Abstract An investigation of the impact of particle size on the mechanical retention of particles in a fibre network has been conducted. The particles used were five sets of quartz particle fractions having fairly narrow particle size distributions with average particle size ranging from a few μm to around 100 μm. The particles were used to model flocculated filler aggregates as part of a larger study of the effect of pre-flocculation on mechanical retention. Pre-flocculation of the filler is a possible strategy to increase the filler content of paper without deterioration of strength properties. A modified laboratory hand sheet former, known as the Rapid Drainage Device (RDD) was used. The major modification consisted of a long pipe that acted as a suction leg, which provides a dewatering vacuum at the same level as on a paper machine. The experimental results showed that mechanical filler retention increased linearly with particle size and grammage of the fibre layer above a critical grammage which depended on particle size. The linear relation was also seen in a pilot scale trial on the FEX pilot-paper machine at Innventia. During this trial fine paper was produced using pre-flocculated filler where the mean particle size of the flocs and fibres was measured in the flow to the headbox. The results from this pilot trial show that mechanical retention is an important part of the total filler retention. Drainage time and therefore drainage resistance increased with the grammage of the fibre layer and amount of quartz particle added. Drainage time, compared at total grammage (i.e. the sum of fibre and quartz particle grammage) was lowest for a fraction of medium-sized particles, with a median size of 35 mm. There was no obvious effect on retention or drainage resistance of a change in the dewatering pressure from 27.5 to 41.5 kPa.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,Forestry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3