Geometry Related Inter-Instrument Differences in Spectrophotometric Measurements

Author:

Edström Per1,Neuman Magnus1,Avramidis Stefanos2,Andersson Mattias1

Affiliation:

1. Mid Sweden University, Department of Natural Sciences, Engineering and Mathematics, SE-871 88 Härnösand , Sweden

2. KTH – Royal Institute of Technology, Department of Numerical Analysis, SE-100 44 Stockholm , Sweden

Abstract

Abstract The L&W Elrepho d/0 and the Spectrolino 45/0 instruments are examined using paper samples with different properties. External factors that influence the measurements - such as the sample background, the instrument calibration and the sample inhomogeneity - are studied, and a methodology for their minimization is presented. Experimental measurements show that such external factors, if not minimized by proper routines, affect the inter-instrument differences far more (up to 4-5 ΔE*ab) than the instrument geometry (the effect of which is small and of order 0.1 ΔE*ab). The DORT2002 radiative transfer model is used to simulate differences caused by instrument geometry. The simulated and measured differences are found to agree in magnitude, and the differences are mapped against sample properties. It is observed that the 45/0 instrument detects higher reflectance from paper samples with negligible absorption and transmittance. When there is considerable absorption (dyed samples) or transmittance (thin samples), the d/0 instrument detects higher reflectance. The physical mechanism behind this behavior is studied and explained using DORT2002, and the instrument differences are shown to depend on the anisotropy of the reflected light. The model/measurement agreement is satisfactory as the characteristic behavior is captured in almost all cases studied. This new understanding is important for facilitating accurate data exchange between the paper and graphic arts industries, but also for interpretation of reflectance measurements in general.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3