Production of thermostable extracellular α-amylase by a moderate thermophilic Bacillus licheniformis isolated from Qinarje Hot Spring (Ardebil prov. of Iran)

Author:

Deljou Ali,Arezi Iman

Abstract

Background and Purpose: Amylases are most important industrial enzymes that account for about 30% of the world’s food, feed, fermentation, textile, detergent and cellulosic industries. This study aimed at optimum production of thermostable α-amylase via moderate thermophilic bacterium (Bacillus licheniformis) which was recently isolated from Qinarje Hot spring.Material and Methods: Initially, ability of bacterium for amylase activity was determined by starch hydrolysis test using Gram’s iodine staining. Then bacterial growth pattern and amylase production curves in basal production medium were graphically determined at different time intervals. Finally, effect of different temperature, pH, carbon source, nitrogen source, minerals and inoculum size were studied on bacterial growth and amylase production using turbidimetric and DNS method, respectively.Results: Optimum enzyme production achieved after 84 hours of inoculation from cultures growing at 40 ˚C and pH 9.0 in a medium containing 0.03% (w/v) of CaCl2, compared to the basal medium, results showed that the best enzyme production happened with inoculum size of 4% (v/v). The addition of 1% (w/v) rice husk (as a Carbon source) enhanced enzyme productivity up to 160% and substitution of the peptone and yeast extract with 1% (w/v) of tryptone (as a Nitrogen source) increased the α-amylase production up to 160%.Conclusion: Our findings show that B. licheniformis-AZ2 strain has an ability to produce the thermostable α-amylase which is suitable in starch processing and food industries. To be commercialized, further investigation is required for enhancement of the enzyme production.Keywords: Bacillus licheniformis; Optimization; Basal medium; Agricultural by-products.

Publisher

Hrvatski Prirodoslovno Drustvo (Croatian Society for Natural Sciences)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3