Author:
MAHIMKAR RAJEEV M.,BARICOS WILLIAM H.,VISAYA ORVIN,POLLOCK ALLAN S.,LOVETT DAVID H.
Abstract
Abstract. The complex interactions of glomerular and tubular epithelial cells with the basal laminae play a critical role in renal function. Disruption of these interactions has been widely implicated in glomerular diseases and acute renal failure. MDC are a large family of membrane-bound proteins containingmetalloprotease,disintegrin (integrin interaction sites), andcysteine-rich domains. Little information is available concerning the presence of MDC in the kidney or their role in renal pathophysiology. Using degenerate PCR primers for the conserved metalloprotease and disintegrin domains of this protein family, cDNA templates from tubules, whole glomeruli, and glomerular epithelial cells (GEC) yielded a single, 195-bp product, which on sequence analysis corresponded to a region in the disintegrin domain of MDC9. Northern analysis of poly(A)+RNA from tubules, whole glomeruli, and GEC revealed a 3.9-kb transcript, identical to that of mouse MDC9. Using antibodies generated against a 21-amino acid peptide present in the metalloprotease domain of MDC9, Western analysis of concanavalinA-enriched glomerular microsomal extracts demonstrated both processed (76 kD) and unprocessed (116 kD) forms of MDC9, which upon reduction changed to the corresponding 84- and 124-kD forms. Histochemical studies revealed a basolateral localization of intrinsic MDC9 protein in renal cortical tubule cells and glomerular visceral epithelial cells, which colocalized with the β1 integrin chain. Expression of green fluorescence protein MDC9 chimeric constructs in GEC or polarized Madin-Darby canine kidney epithelial cells revealed a similar punctate basolateral surface localization. Transient overexpression of the soluble disintegrin domain-green fluorescence protein chimera in GEC led to dramatic changes in cellular morphology with rounding and detachment from cell monolayers. These studies document the presence of MDC9 in renal epithelial cells and suggest an important role for MDC9 in renal epithelial cellular interactions with the basal lamina and adjoining cells.
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献