TRPC5 Does Not Cause or Aggravate Glomerular Disease

Author:

Wang XuexiangORCID,Dande Ranadheer R.,Yu Hao,Samelko Beata,Miller Rachel E.,Altintas Mehmet M.,Reiser Jochen

Abstract

Transient receptor potential channel 5 (TRPC5) is highly expressed in brain and kidney and mediates calcium influx and promotes cell migration. In the kidney, loss of TRPC5 function has been reported to benefit kidney filter dynamics by balancing podocyte cytoskeletal remodeling. However, in vivo gain-in-function studies of TRPC5 with respect to kidney function have not been reported. To address this gap, we developed two transgenic mouse models on the C57BL/6 background by overexpressing either wild-type TRPC5 or a TRPC5 ion-pore mutant. Compared with nontransgenic controls, neither transgenic model exhibited an increase in proteinuria at 8 months of age or a difference in LPS-induced albuminuria. Moreover, activation of TRPC5 by Englerin A did not stimulate proteinuria, and inhibition of TRPC5 by ML204 did not significantly lower the level of LPS-induced proteinuria in any group. Collectively, these data suggest that the overexpression or activation of the TRPC5 ion channel does not cause kidney barrier injury or aggravate such injury under pathologic conditions.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3