Experimental tests of three-dimensional model of urinary concentrating mechanism.

Author:

Han J S,Thompson K A,Chou C L,Knepper M A

Abstract

Recently, a new model of the urinary concentrating process has been proposed that takes into account the three-dimensional architecture of the renal medulla. Under the assumptions of the model, computer simulations predicted significant axial osmolality gradients in the inner medulla without active transport by the inner medullary loop of Henle. Two of the model assumptions (which constitute hypotheses for this study) were: (1) the osmotic water permeability of the initial part of the inner medullary collecting duct (initial IMCD) is very low even in the presence of vasopressin; and (2) there is significant lateral separation of structures such that thin descending limbs are far from the collecting ducts at the same inner medullary level. The first hypothesis was addressed by perfusing rat initial IMCD segments in vitro and measuring osmotic water permeability. With the osmotic gradient oriented as predicted by the model (lumen greater than bath), vasopressin increased the osmotic water permeability from 286 to 852 microns/s. Three additional series of experiments confirmed the high water permeability in the presence of vasopressin. The second hypothesis was addressed by morphometric analysis of histologic cross-sections of the rat renal medulla. Mean distances of descending limbs to the nearest adjacent collecting duct were very small throughout the inner medulla (less than 6 microns) and substantially less than in the outer medulla (28 microns). It was concluded that the data are inconsistent with both hypotheses and therefore do not support the feasibility of the "three-dimensional" model of the renal inner medulla. The axial distributions of loops of Henle and collecting ducts in the rat renal medulla are also reported.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Axial compartmentation of descending and ascending thin limbs of Henle's loops;American Journal of Physiology-Renal Physiology;2013-02-01

2. The Urine Concentrating Mechanism and Urea Transporters;Seldin and Giebisch's The Kidney;2013

3. Structural Organization of the Mammalian Kidney;Seldin and Giebisch's The Kidney;2013

4. Systems biology in physiology: the vasopressin signaling network in kidney;American Journal of Physiology-Cell Physiology;2012-12-01

5. Structure and Function of the Thin Limbs of the Loop of Henle;Comprehensive Physiology;2012-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3