Polycystic kidney disease. 1: Identification and analysis of the primary defect.

Author:

Harris P C,Ward C J,Peral B,Hughes J

Abstract

The identification of the primary defect in autosomal dominant polycystic kidney disease (ADPKD) by biochemical methods has proved difficult because of the complexity of the cystic kidney. However, by the use of the genetic method of positional cloning, a gene accounting for approximately 85% of ADPKD, PKD1, has now been identified in the chromosome region 16p13.3. Its exact location was pinpointed because it was bisected by a chromosome translocation; members with the balanced exchange had PKD1. The PKD1 gene encodes an approximately 14-kb transcript, but full characterization was complicated, because most of the gene lies in a genomic region that is duplicated elsewhere on chromosome 16; the duplicate area encodes three genes with substantial homology to PKD1. At present, only seven mutations of PKD1 have been characterized and these are clustered in the nonduplicated, 3' end of the gene. However, a number of patients with large deletions of the PKD1 and adjacent tuberous sclerosis 2 (TSC2) genes, who have tuberous sclerosis and severe childhood-onset polycystic kidney disease, have also been described. Recently, the entire sequence of the PKD1 transcript and the genomic region containing the gene have been determined. The PKD1 gene covers approximately 52 kb of genomic DNA and is divided into 46 exons. The transcript is approximately 14.15 kb, and the predicted protein polycystin is 4302/3 amino acids with a calculated mass of approximately 460 kd. Polycystin contains several distinctive extracellular domains, including a flank-leucine rich repeat-flank domain, a C-type lectin, 16 approximately 85-amino-acid units that are similar to immunoglobulin repeats, four fibronectin Type III-related domains, and a low-density lipoprotein A domain. The C-terminal third of the protein has multiple hydrophobic regions, and modeling of this region suggests the presence of many transmembrane domains and a cytoplasmic C terminus. Hence, polycystin is probably an integral membrane protein with multiple extracellular domains that are involved in cell-cell and/or cell-matrix interactions. The ADPKD phenotype suggests that polycystin may play a role in cell-matrix communication, which is important for normal basement membrane production and for controlling cellular differentiation.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3