Nitric Oxide Synthesis and Oxidative Stress in the Renal Cortex of Rats with Diabetes Mellitus

Author:

ISHII NAOHITO,PATEL KAUSHIK P.,LANE PASCALE H.,TAYLOR TRACI,BIAN KA,MURAD FERID,POLLOCK JENNIFER S.,CARMINES PAMELA K.

Abstract

Abstract. Experiments were performed to test the hypothesis that diabetes mellitus disrupts the balance between synthesis and degradation of nitric oxide (NO) in the renal cortex. Diabetes was induced by injection of streptozotocin, and sufficient insulin was provided to maintain moderate hyperglycemia for the ensuing 2 wk. Despite an 80% increase in total NO synthase activity measured by L-citrulline assay, nicotinamide adenine dinucleotide phosphate-diaphorase staining was unaltered, and no changes in NO synthase isoform protein levels or their distribution were evident in renal cortex from diabetic rats. Superoxide anion production was accelerated twofold in renal cortical slices from diabetic rats, with an associated 50% increase in superoxide dismutase activity. Western blots prepared by use of a monoclonal antinitrotyrosine antibody revealed an approximately 70-kD protein in renal cortex from sham rats, the nitrotyrosine content of which was threefold greater in cortical samples from diabetic rats. These observations indicate that the early stage of diabetes mellitus provokes accelerated renal cortical superoxide anion production in a setting of normal or increased NO production. This situation can be expected to promote peroxynitrite formation, resulting in the tyrosine nitration of a single protein of unknown identity, as well as a decline in the bioavailability of NO. These events are consistent with the postulate that oxidative stress promotes NO degradation in the renal cortex during the early stage of diabetes mellitus.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3