Current Methodological Challenges of Single-Cell and Single-Nucleus RNA-Sequencing in Glomerular Diseases

Author:

Deleersnijder Dries,Callemeyn Jasper,Arijs Ingrid,Naesens Maarten,Van Craenenbroeck Amaryllis H.,Lambrechts Diether,Sprangers Ben

Abstract

Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) allow transcriptomic profiling of thousands of cells from a renal biopsy specimen at a single-cell resolution. Both methods are promising tools to unravel the underlying pathophysiology of glomerular diseases. This review provides an overview of the technical challenges that should be addressed when designing single-cell transcriptomics experiments that focus on glomerulopathies. The isolation of glomerular cells from core needle biopsy specimens for single-cell transcriptomics remains difficult and depends upon five major factors. First, core needle biopsies generate little tissue material, and several samples are required to identify glomerular cells. Second, both fresh and frozen tissue samples may yield glomerular cells, although every experimental pipeline has different (dis)advantages. Third, enrichment for glomerular cells in human tissue before single-cell analysis is challenging because no effective standardized pipelines are available. Fourth, the current warm cell-dissociation protocols may damage glomerular cells and induce transcriptional artifacts, which can be minimized by using cold dissociation techniques at the cost of less efficient cell dissociation. Finally, snRNA-seq methods may be superior to scRNA-seq in isolating glomerular cells; however, the efficacy of snRNA-seq on core needle biopsy specimens remains to be proven. The field of single-cell omics is rapidly evolving, and the integration of these techniques in multiomics assays will undoubtedly create new insights in the complex pathophysiology of glomerular diseases.

Funder

KU Leuven

Fonds Wetenschappelijk Onderzoek

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3